In this dissertation, suggestions and innovative solutions are proposed to fully perform an on-line optimization without any risk for the hardware. On the one hand, a new real-time fitness implementation can halt the carrying out of an experiment, if a highly unsatisfactory solution is recognized. On the other hand, a new hybrid architecture integrates EA and simplex method in order speed up the convergence.

Online hybrid evolutionary algorithms for auto-tuning of electric drives / Cascella, Giuseppe Leonardo. - ELETTRONICO. - (2005). [10.60576/poliba/iris/cascella-giuseppe-leonardo_phd2005]

Online hybrid evolutionary algorithms for auto-tuning of electric drives

Cascella, Giuseppe Leonardo
2005-01-01

Abstract

In this dissertation, suggestions and innovative solutions are proposed to fully perform an on-line optimization without any risk for the hardware. On the one hand, a new real-time fitness implementation can halt the carrying out of an experiment, if a highly unsatisfactory solution is recognized. On the other hand, a new hybrid architecture integrates EA and simplex method in order speed up the convergence.
2005
Online hybrid evolutionary algorithms for auto-tuning of electric drives / Cascella, Giuseppe Leonardo. - ELETTRONICO. - (2005). [10.60576/poliba/iris/cascella-giuseppe-leonardo_phd2005]
File in questo prodotto:
File Dimensione Formato  
D_2005_01.pdf

accesso aperto

Licenza: Non specificato
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/253041
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact