We discuss some attempts to apply the classical variational methods, in the spirit of Ambrosetti-Rabinowitz, to parametrized elliptic problems defined on unbounded domains. We construct some min-max classes and establish some estimates which allow, for instance, to conclude that, while for a generic coefficient there is always a solution for all small values of the parameter, in the case of a coefficient with a suitable exponential decay and in dimension N = 2 the set of the values of the parameter for which the problem has a nontrivial solution is unbounded.

Min-max levels transition in parametrized elliptic problems on unbounded domains / Devillanova, G; Solimini, S. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - STAMPA. - 33:3(2022), pp. 677-694. [10.4171/RLM/985]

Min-max levels transition in parametrized elliptic problems on unbounded domains

Devillanova, G;Solimini, S
2022-01-01

Abstract

We discuss some attempts to apply the classical variational methods, in the spirit of Ambrosetti-Rabinowitz, to parametrized elliptic problems defined on unbounded domains. We construct some min-max classes and establish some estimates which allow, for instance, to conclude that, while for a generic coefficient there is always a solution for all small values of the parameter, in the case of a coefficient with a suitable exponential decay and in dimension N = 2 the set of the values of the parameter for which the problem has a nontrivial solution is unbounded.
2022
Min-max levels transition in parametrized elliptic problems on unbounded domains / Devillanova, G; Solimini, S. - In: ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI. - ISSN 1120-6330. - STAMPA. - 33:3(2022), pp. 677-694. [10.4171/RLM/985]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/262854
Citazioni
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact