Dielectric elastomers are electroactive polymers capable of significant deformation under an electric field. They have acquired attention for applications in soft robotics, adaptive optics, and energy harvesting. Among DEs, dielectric elastomer actuators are notable for their high energy density, large strain capabilities, and mechanical flexibility. DEAs operate through electrostatic attraction: applying high voltage across a thin dielectric elastomer film between two compliant electrodes generates an electrostatic force, compressing the elastomer and causing reversible deformation. The performance of DEAs, achieving strains up to 100%, is influenced by the elastomer’s high dielectric constant and low elastic modulus. High voltage, often several kilovolts, is essential to generate the necessary electrostatic forces. This thesis focuses on high-voltage driving circuits, addressing design, modeling, and control. The required high voltage to actuate DEAs, particularly commercial DE membranes like Wacker Elastosil®2030, ranges from 1 to 3.5 kV, and up to 5 kV in some cases, with current in the μA range. Traditional high voltage control uses bulky, heavy, and expensive laboratory amplifiers. The challenge lies in creating cost-effective, compact electronic components to generate the necessary high voltage. The thesis aims to develop a voltage control algorithm for a custom-designed high voltage driving circuit.
Gli elastomeri dielettrici sono polimeri elettroattivi capaci di deformazioni significative sotto un campo elettrico. Hanno acquisito attenzione per le applicazioni nella robotica morbida, nell'ottica adattiva e nella raccolta di energia. Tra i DE, gli attuatori in elastomero dielettrico si distinguono per la loro elevata densità di energia, grandi capacità di deformazione e flessibilità meccanica. I DEA funzionano attraverso l'attrazione elettrostatica: l'applicazione di alta tensione attraverso un sottile film di elastomero dielettrico tra due elettrodi conformi genera una forza elettrostatica, comprimendo l'elastomero e provocando una deformazione reversibile. Le prestazioni dei DEA, che raggiungono deformazioni fino al 100%, sono influenzate dall’elevata costante dielettrica e dal basso modulo elastico dell’elastomero. L'alta tensione, spesso diversi kilovolt, è essenziale per generare le forze elettrostatiche necessarie. Questa tesi si concentra sui circuiti di pilotaggio ad alta tensione, affrontando la progettazione, la modellazione e il controllo. L'alta tensione richiesta per attivare i DEA, in particolare le membrane DE commerciali come Wacker Elastosil®2030, varia da 1 a 3,5 kV e in alcuni casi fino a 5 kV, con corrente nell'intervallo μA. Il tradizionale controllo ad alta tensione utilizza amplificatori da laboratorio ingombranti, pesanti e costosi. La sfida sta nel creare componenti elettronici compatti ed economici per generare l’alta tensione necessaria. La tesi mira a sviluppare un algoritmo di controllo della tensione per un circuito di pilotaggio ad alta tensione progettato su misura.
Design, modelling, and control of a high voltage driving circuit for dielectric elastomer actuators / Perri, Carmen. - ELETTRONICO. - (2024).
Design, modelling, and control of a high voltage driving circuit for dielectric elastomer actuators
Perri, Carmen
2024-01-01
Abstract
Dielectric elastomers are electroactive polymers capable of significant deformation under an electric field. They have acquired attention for applications in soft robotics, adaptive optics, and energy harvesting. Among DEs, dielectric elastomer actuators are notable for their high energy density, large strain capabilities, and mechanical flexibility. DEAs operate through electrostatic attraction: applying high voltage across a thin dielectric elastomer film between two compliant electrodes generates an electrostatic force, compressing the elastomer and causing reversible deformation. The performance of DEAs, achieving strains up to 100%, is influenced by the elastomer’s high dielectric constant and low elastic modulus. High voltage, often several kilovolts, is essential to generate the necessary electrostatic forces. This thesis focuses on high-voltage driving circuits, addressing design, modeling, and control. The required high voltage to actuate DEAs, particularly commercial DE membranes like Wacker Elastosil®2030, ranges from 1 to 3.5 kV, and up to 5 kV in some cases, with current in the μA range. Traditional high voltage control uses bulky, heavy, and expensive laboratory amplifiers. The challenge lies in creating cost-effective, compact electronic components to generate the necessary high voltage. The thesis aims to develop a voltage control algorithm for a custom-designed high voltage driving circuit.File | Dimensione | Formato | |
---|---|---|---|
36 ciclo-PERRI Carmen.pdf.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
12.24 MB
Formato
Adobe PDF
|
12.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.