To date, the construction industry is globally among the most impactful on the environment. A look into the past may lead to questioning about how housing systems have been transformed and how to cope with current critical issues. A common factor in past architectural styles for each location has always been the adaptation to the climate and the natural environment. To address the heat, cold, and winds of the site where they were to be built, building types were adapted with specific shapes and materials, often sourced locally. As a result, the transformation of constructions over the centuries has given a varied architectural landscape, unique to each region of the world. This trend was reversed starting from the Second Industrial Revolution when standardized construction techniques replaced traditional and local methods. The use of reinforced concrete spread across all latitudes, influencing architectural forms, which were no longer adapted to the local climate. To meet the thermo-hygrometric requirements of indoor environments, increasingly widespread thermal conditioning systems were used. This made it possible for the same building to be constructed anywhere in the world. The consequences of this approach are among the causes of the current significant environmental impact of the construction sector. Indeed, the reduced use of local materials, increased consumption of raw materials, increased transportation of construction elements, and higher energy consumption all contribute to increased emissions. Another aspect that has been irreversibly neglected in the last century is the variety of architectural forms and their corresponding adaptation to the surrounding environment. During recent decades, the technological progress of the construction industry has been very slow compared to other industrial sectors, which have increased productivity and efficiency by adopting innovative technologies. 3D printing is a production technology already established in other industrial sectors, and the interest in using such technology for construction has rapidly grown, proving to be one of the most promising technologies to innovate the construction sector. Its potential includes cost reduction, reduced energy consumption, lower material waste, automation of construction processes (thereby reducing risks for workers and the chance of errors), increased productivity, and greater efficiency. Moreover, 3D printing technology offers a greater degree of freedom in architectural forms, allowing curved and three-dimensional shapes to be realized more easily compared to traditional technologies. This architectural freedom could provide a solution to the search for a sustainable construction approach, as it would allow for a renewed connection between architectural forms and the surrounding environment. The primary goal of this thesis is to explore the possibilities that 3D printing offers to the construction industry. Specifically, by studying the evolution of 3D printing in construction both from a market and scientific innovation perspective, the current limitations to the widespread applicability of 3D printing for building construction have been highlighted. For 3D printing to become an established technology in construction, the printed products must be competitive in terms of performance within the existing market. To overcome some of these limitations, this study proposes a methodological approach to support the design of building components, based on the parameterization of digital models and the iterative analysis of their performance. This allows for the creation of adaptable building elements suitable for different boundary conditions and prefabricated using 3D printing technology. The proposed methodology follows a four-phase iterative process: I. design development and parametric modelling; II. definition of performance criteria and boundary conditions; III. performance simulation and parameter identification; IV. production with 3D printing. In particular, the first three phases are repeated until the model's parameters are refined to achieve optimal performance under the specified conditions. The methodological approach has been employed in various applications and related case studies that specifically implement the basic methodology regarding aspects of thermal performance, recycling of raw materials, sustainability, and the environmental impact of construction processes. Among the various performance characteristics (acoustic, structural, environmental impact, lifecycle, etc.) that a building component must meet, the case studies focus on fulfilling thermal performance requirements. This characteristic is crucial for the effective use of the designed building products. Additionally, the applications aim to demonstrate the correlation that can occur between geometry and the thermal path that affects the overall transmittance of an envelope, and thus the tangible advantage that can result from the use of 3D printing, which allows for a high degree of geometric freedom. A common feature of the developed case studies is the use of 3D printing as a technology for the prefabrication of building components, rather than for the large-scale on-site production of buildings, providing examples of this use. The applications aim to increasingly automate the parameter efficiency process based on boundary conditions. Starting from a manual iterative method, which involves modifying parameters and then repeating simulations, a workflow was developed to allow for automatic simulations as parameters vary until the goal is reached. Finally, the approach was adopted for experimental work focused on the development and prototyping of an envelope system made of prefabricated cementitious elements using 3D printing. A preliminary phase focused on modifying a cementitious mix to improve its performance according to printing requirements. Additionally, 3D printing tests were conducted to adapt and optimize the initial geometry to meet the requirements of the employed printer. Ultimately, a full-scale prototype element was produced.
L’industria delle costruzioni ad oggi è globalmente fra le più impattanti sull’ambiente. Uno sguardo al passato può farci interrogare su come si siano trasformati i sistemi abitativi e su come sopperire alle criticità attuali. Un fattore comune nelle architetture del passato è sempre stato ad ogni latitudine l’adattamento al clima e al contesto naturale. Per far fronte al caldo, al freddo, ai venti del sito in cui sarebbero sorte, le tipologie edilizie venivano adattate con specifiche forme e materiali il più delle volte reperiti localmente. È così che la trasformazione delle costruzioni attraverso i secoli ci ha restituito un panorama architettonico vario e distinto per ogni area della terra. Questa tendenza è stata invertita a partire dalla seconda rivoluzione industriale quando la standardizzazione di tecniche costruttive ha preso il posto di metodi tradizionali e locali. L’uso del calcestruzzo armato si è diffuso ad ogni latitudine condizionando le forme architettoniche non più adattate ai contesti climatici. Per sopperire alle esigenze di natura termo-igrometrica degli ambienti interni si è fatto quindi ricorso agli impianti di condizionamento termico sempre più diffusi. Ciò ha reso plausibile che lo stesso edificio potesse essere costruito in qualunque parte del globo. Le conseguenze di questa attitudine possono essere annoverate fra le cause dell’attuale grande impatto del settore delle costruzioni sull’ambiente. Infatti, il minore uso di materiali locali; il maggiore consumo di materie prime; l’aumento dei trasporti di elementi costruttivi; il maggiore consumo energetico concorrono all’incremento delle emissioni. Un ulteriore aspetto irrimediabilmente trascurato nell’ultimo secolo è stato la varietà delle forme architettoniche e il corrispondente adattamento all’ambiente circostante. Negli ultimi decenni il progresso tecnologico dell’industria delle costruzioni è stato molto lento se comparato ad altri settori industriali che hanno aumentato la propria produttività ed efficienza adottando tecnologie innovative. La stampa 3D è una tecnologia produttiva, già affermata in altri settori industriali, il cui interesse si è rapidamente diffuso per l’impiego nelle costruzioni rivelandosi una delle tecnologie più promettenti per innovare il settore. Le potenzialità riguardano la riduzione di costi, la riduzione dei consumi energetici, la riduzione di materiali di scarto, l’automatizzazione dei processi costruttivi riducendo i rischi per i lavoratori e le possibilità di errore, l’aumento della produttività e l’aumento dell’efficienza. Inoltre, la tecnologia di stampa 3D offre un maggiore grado di libertà per le forme architettoniche ossia forme curve e variabili nelle tre dimensioni possono essere realizzate facilmente rispetto a quanto permettano tecnologie tradizionali. Questa libertà architettonica potrebbe fornire una risposta alla ricerca di un approccio sostenibile alle costruzioni, in quanto consentirebbe di ritrovare un legame tra forme architettoniche e ambiente circostante. Lo scopo principale del presente lavoro di tesi è esplorare le possibilità che la stampa 3D offre all'industria delle costruzioni. In particolare, studiando l'evoluzione della stampa 3D per l'edilizia sia dal punto di vista del mercato che dell'innovazione scientifica, sono stati evidenziati gli attuali limiti all'applicabilità diffusa della tecnologia di stampa 3D per la costruzione di edifici. Affinché la stampa 3D delle costruzioni diventi una tecnologia affermata infatti è necessario che i prodotti edilizi stampati risultino concorrenziali nel mercato esistente dal punto di vista delle performance. Per superare alcuni di questi limiti, la corrente trattazione propone un approccio metodologico di supporto alla progettazione di componenti edilizi basato sulla parametrizzazione di modelli digitali e sull’analisi iterativa delle prestazioni degli stessi per ottenere elementi di involucro adattabili a diverse condizioni al contorno e prefabbricabili con la tecnologia di stampa 3D. La metodologia proposta segue un processo iterativo di quattro fasi: I. sviluppo del design e modellazione parametrica; II. definizione dei criteri prestazionali e delle condizioni al contorno; III. simulazione delle prestazioni e identificazione dei parametri; IV. produzione con stampa 3D. In particolare, le prime tre fasi vengono ripetute fino a quando i parametri del modello vengono perfezionati per ottenere prestazioni ottimali nelle condizioni al contorno specificate. L’approccio metodologico è stato impiegato in diverse applicazioni e relativi casi studio che nello specifico implementano la metodologia di base riguardo gli aspetti delle performance termiche, del riciclo di materiali come materie prime, della sostenibilità e degli impatti sull’ambiente dei processi costruttivi. Tra le diverse caratteristiche prestazionali (acustiche, strutturali, di impatto ambientale, di ciclo di vita, ecc.) che un componente edilizio deve soddisfare, i casi di studio in esame si concentrano sul soddisfacimento delle prestazioni termiche. Questa caratteristica è fondamentale per l'utilizzo effettivo dei prodotti edilizi progettati. Inoltre, le applicazioni hanno lo scopo di dimostrare la correlazione che può verificarsi tra la geometria e il percorso termico che influisce sulla trasmittanza totale di un involucro e quindi il vantaggio concreto che può derivare dall'uso della stampa 3D, che consente un elevato grado di libertà geometrica. Un aspetto comune dei casi di studio sviluppati riguarda l'uso della stampa 3D come tecnologia per la prefabbricazione di componenti edilizi piuttosto che per la produzione in loco di edifici su larga scala, fornendo esempi di impiego. Le applicazioni affrontate mirano a rendere sempre più automatizzato il processo di ottimizzazione dei parametri, in funzione delle condizioni al contorno. Partendo da un metodo iterativo manuale, che consiste nel modificare i parametri e poi ripetere le simulazioni, è stato sviluppato un flusso di lavoro che consente di effettuare simulazioni automatiche al variare dei parametri fino al raggiungimento dell'obiettivo. Infine, l'approccio è stato adottato per un lavoro sperimentale di sviluppo e prototipazione di un sistema di involucro costituito da elementi cementizi prefabbricabili con stampa 3D. Una fase preliminare si è concentrata sulla modifica di una miscela cementizia per migliorarne le prestazioni in base ai requisiti di stampa. Inoltre, sono stati condotti test di stampa 3D per adattare la geometria iniziale e ottimizzarla rispetto ai requisiti della stampante impiegata. Infine, è stato realizzato il prototipo di un elemento in scala reale.
An integrated methodology for supporting the design of 3D-printed building components / Volpe, Stelladriana. - ELETTRONICO. - (2025).
An integrated methodology for supporting the design of 3D-printed building components
Volpe, Stelladriana
2025-01-01
Abstract
To date, the construction industry is globally among the most impactful on the environment. A look into the past may lead to questioning about how housing systems have been transformed and how to cope with current critical issues. A common factor in past architectural styles for each location has always been the adaptation to the climate and the natural environment. To address the heat, cold, and winds of the site where they were to be built, building types were adapted with specific shapes and materials, often sourced locally. As a result, the transformation of constructions over the centuries has given a varied architectural landscape, unique to each region of the world. This trend was reversed starting from the Second Industrial Revolution when standardized construction techniques replaced traditional and local methods. The use of reinforced concrete spread across all latitudes, influencing architectural forms, which were no longer adapted to the local climate. To meet the thermo-hygrometric requirements of indoor environments, increasingly widespread thermal conditioning systems were used. This made it possible for the same building to be constructed anywhere in the world. The consequences of this approach are among the causes of the current significant environmental impact of the construction sector. Indeed, the reduced use of local materials, increased consumption of raw materials, increased transportation of construction elements, and higher energy consumption all contribute to increased emissions. Another aspect that has been irreversibly neglected in the last century is the variety of architectural forms and their corresponding adaptation to the surrounding environment. During recent decades, the technological progress of the construction industry has been very slow compared to other industrial sectors, which have increased productivity and efficiency by adopting innovative technologies. 3D printing is a production technology already established in other industrial sectors, and the interest in using such technology for construction has rapidly grown, proving to be one of the most promising technologies to innovate the construction sector. Its potential includes cost reduction, reduced energy consumption, lower material waste, automation of construction processes (thereby reducing risks for workers and the chance of errors), increased productivity, and greater efficiency. Moreover, 3D printing technology offers a greater degree of freedom in architectural forms, allowing curved and three-dimensional shapes to be realized more easily compared to traditional technologies. This architectural freedom could provide a solution to the search for a sustainable construction approach, as it would allow for a renewed connection between architectural forms and the surrounding environment. The primary goal of this thesis is to explore the possibilities that 3D printing offers to the construction industry. Specifically, by studying the evolution of 3D printing in construction both from a market and scientific innovation perspective, the current limitations to the widespread applicability of 3D printing for building construction have been highlighted. For 3D printing to become an established technology in construction, the printed products must be competitive in terms of performance within the existing market. To overcome some of these limitations, this study proposes a methodological approach to support the design of building components, based on the parameterization of digital models and the iterative analysis of their performance. This allows for the creation of adaptable building elements suitable for different boundary conditions and prefabricated using 3D printing technology. The proposed methodology follows a four-phase iterative process: I. design development and parametric modelling; II. definition of performance criteria and boundary conditions; III. performance simulation and parameter identification; IV. production with 3D printing. In particular, the first three phases are repeated until the model's parameters are refined to achieve optimal performance under the specified conditions. The methodological approach has been employed in various applications and related case studies that specifically implement the basic methodology regarding aspects of thermal performance, recycling of raw materials, sustainability, and the environmental impact of construction processes. Among the various performance characteristics (acoustic, structural, environmental impact, lifecycle, etc.) that a building component must meet, the case studies focus on fulfilling thermal performance requirements. This characteristic is crucial for the effective use of the designed building products. Additionally, the applications aim to demonstrate the correlation that can occur between geometry and the thermal path that affects the overall transmittance of an envelope, and thus the tangible advantage that can result from the use of 3D printing, which allows for a high degree of geometric freedom. A common feature of the developed case studies is the use of 3D printing as a technology for the prefabrication of building components, rather than for the large-scale on-site production of buildings, providing examples of this use. The applications aim to increasingly automate the parameter efficiency process based on boundary conditions. Starting from a manual iterative method, which involves modifying parameters and then repeating simulations, a workflow was developed to allow for automatic simulations as parameters vary until the goal is reached. Finally, the approach was adopted for experimental work focused on the development and prototyping of an envelope system made of prefabricated cementitious elements using 3D printing. A preliminary phase focused on modifying a cementitious mix to improve its performance according to printing requirements. Additionally, 3D printing tests were conducted to adapt and optimize the initial geometry to meet the requirements of the employed printer. Ultimately, a full-scale prototype element was produced.File | Dimensione | Formato | |
---|---|---|---|
37 ciclo-VOLPE Stelladriana.pdf
accesso aperto
Descrizione: An integrated methodology for supporting the design of 3D-printed building components
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
7.09 MB
Formato
Adobe PDF
|
7.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.