The physical and digital domains are becoming increasingly intertwined, encompassing not just objects, but also locations, processes and living entities. In this scenario, everyday objects acquire the capability of collecting, storing, processing and exchanging information. This technological trend has been supported by the research on the Internet of Things (IoT) and the broader domain of Internet of Everything (IoE). Within such context, Cyber-Physical Systems (CPSs) have emerged as complex systems that tightly integrate sensing, computation, communication and actuation capabilities to control physical processes. Key CPS requirements include responsiveness, reliability and safety. To cope with the decentralized, heterogeneous and volatile nature of large-scale IoT-based CPSs, this dissertation adopts a Multi-Agent System (MAS) perspective, where each device becomes a smart entity endowed with decision-making abilities and adaptable behaviour. However, continuous node mobility and intermittent connectivity hinder trust-based interactions among these agents. Distributed Ledger Technologies (DLTs) - particularly those built upon Directed Acyclic Graph (DAG) structures - provide promising solutions to these coordination challenges in CPS scenarios by ensuring tamper-resistant data exchange without centralized intermediaries. This dissertation proposes a novel dual-layer interledger framework that unifies multiple blockchain platforms through a shared DAG-based backbone. This enables the design of a microservice architecture that enhances scalability by decoupling system components and distributing the computation required for servicing requests, with a DAG-based substrate to enable transparent data management and tracking of events involving multiple different ledgers. Furthermore, it investigates methods to integrate Knowledge Representation and Reasoning (KRR) for supporting more sophisticated tasks of resource discovery, composition and negotiation by means of Smart Contracts (SCs) leveraging automated reasoning. For this purpose, the Seesaw prototype has been implemented demonstrating how semantic-enabled SCs can facilitate robust, logically explainable coordination in complex CPS environments. Moreover, the need to allow more articulate dialogue capabilities among components of pervasive CPSs has motivated the work on a framework based on Computational Argumentation theory, in which a graph-based formalism allows the analysis of interrelation among arguments, detecting agreements and conflicts. As a further step, prototypes in several case studies show how KRR technologies have been integrated into the dual-layer infrastructure to foster scalability, trustworthiness, and intelligence in interconnected cyber-physical domains. In this context, intelligent agents can seamlessly collaborate, engage in dialogue, adapt and evolve to meet the increasingly complex demands of CPS in the Digital Twin era.
Recentemente, si può osservare un trend tecnologico sempre più preminente di fusione dei domini fisico e digitale, arrivando a coinvolgere non solo gli oggetti, ma anche luoghi, processi e persino esseri viventi. In questo scenario, gli oggetti di uso quotidiano acquisiscono la capacità di raccogliere, memorizzare, elaborare e scambiare informazioni. Questo nuovo contesto tecnologico è supportato dalla ricerca sull’Internet of Things (IoT) e sul più ampio dominio dell’Internet of Everything (IoE). In tale ambito, il Cyber-Physical System (CPSs) è emerso come paradigma di sistemi complessi che integrano sensoristica, computazione, comunicazione e attuazione per controllare processi fisici, i cui requisiti chiave includono responsività, affidabilità e sicurezza. Per far fronte alla natura decentralizzata, eterogenea e volatile dei CPS su larga scala basati su IoT, questa dissertazione propone un Multi-Agent System (MAS), in cui ogni dispositivo diventa un’entità intelligente dotata di capacità decisionali e comportamento adattabile. Tuttavia, la mobilità continua dei nodi e la connettività intermittente ostacolano interazioni basate sulla fiducia tra questi agenti. Le Distributed Ledger Technologies (DLT) – in particolare quelle basate su strutture di Directed Acyclic Graph (DAG) – offrono soluzioni promettenti a queste sfide di coordinamento nei contesti CPS, garantendo uno scambio di dati robusto alle manomissioni e senza intermediari centralizzati. In questa prospettiva, il presente lavoro propone un nuovo framework per la comunicazione fra diverse piattaforme DLT che si articola in due livelli. L’infrastruttura progettata permette di far interagire molteplici piattaforme blockchain attraverso un substrato basato su DLT DAG. Questo approccio possibile la definizione di un’architettura a microservizi che migliora la scalabilità, separando i componenti del sistema e distribuendo l’elaborazione necessaria per rispondere alle richieste attraverso il DLT DAG. Ciò rende possibile una gestione dei servizi trasparente tenendo traccia di eventi che coinvolgono diversi ledger. Inoltre, il lavoro analizza metodi per integrare le tecnologie di Knowledge Representation and Reasoning (KRR) con l’obiettivo di supportare task più sofisticati di resource discovery, composition e negotiation tramite Smart Contract (SC) che sfruttano motori di ragionamento automatico. A questo scopo, è stato implementato il prototipo SeeSaw, dimostrando come SC abilitati alla semantica possano facilitare una coordinazione robusta e spiegabile su base logica in ambienti CPS complessi. La necessità di integrare capacità di dialogo più articolate tra i componenti di un CPS ha motivato lo sviluppo di un framework basato sulla teoria della Computational Argumentation, in cui un formalismo basato su grafi permette di analizzare le interrelazioni tra gli argomenti, rilevando informazioni in accordo e in conflitto. Infine, lo sviluppo di prototipi in diversi casi di studio ha permesso di dimostrare l’applicabilità e i vantaggi delle tecnologie KRR e delle componenti dell’infrastruttura DLT a due livelli progettata per favorire scalabilità, affidabilità e intelligenza in CPS distribuiti in diversi domini. Il lavoro svolto propone innovazioni metodologiche e tecnologiche con cui agenti intelligenti possono collaborare in modo fluido, dialogare, adattarsi ed evolvere per soddisfare le esigenze sempre più complesse dei CPS nell’era del Digital Twin.
Knowledge-Based Coordination in Cyber-Physical Systems via Distributed Ledger Technologies / Tomasino, Arnaldo. - ELETTRONICO. - (2025).
Knowledge-Based Coordination in Cyber-Physical Systems via Distributed Ledger Technologies
Tomasino, Arnaldo
2025-01-01
Abstract
The physical and digital domains are becoming increasingly intertwined, encompassing not just objects, but also locations, processes and living entities. In this scenario, everyday objects acquire the capability of collecting, storing, processing and exchanging information. This technological trend has been supported by the research on the Internet of Things (IoT) and the broader domain of Internet of Everything (IoE). Within such context, Cyber-Physical Systems (CPSs) have emerged as complex systems that tightly integrate sensing, computation, communication and actuation capabilities to control physical processes. Key CPS requirements include responsiveness, reliability and safety. To cope with the decentralized, heterogeneous and volatile nature of large-scale IoT-based CPSs, this dissertation adopts a Multi-Agent System (MAS) perspective, where each device becomes a smart entity endowed with decision-making abilities and adaptable behaviour. However, continuous node mobility and intermittent connectivity hinder trust-based interactions among these agents. Distributed Ledger Technologies (DLTs) - particularly those built upon Directed Acyclic Graph (DAG) structures - provide promising solutions to these coordination challenges in CPS scenarios by ensuring tamper-resistant data exchange without centralized intermediaries. This dissertation proposes a novel dual-layer interledger framework that unifies multiple blockchain platforms through a shared DAG-based backbone. This enables the design of a microservice architecture that enhances scalability by decoupling system components and distributing the computation required for servicing requests, with a DAG-based substrate to enable transparent data management and tracking of events involving multiple different ledgers. Furthermore, it investigates methods to integrate Knowledge Representation and Reasoning (KRR) for supporting more sophisticated tasks of resource discovery, composition and negotiation by means of Smart Contracts (SCs) leveraging automated reasoning. For this purpose, the Seesaw prototype has been implemented demonstrating how semantic-enabled SCs can facilitate robust, logically explainable coordination in complex CPS environments. Moreover, the need to allow more articulate dialogue capabilities among components of pervasive CPSs has motivated the work on a framework based on Computational Argumentation theory, in which a graph-based formalism allows the analysis of interrelation among arguments, detecting agreements and conflicts. As a further step, prototypes in several case studies show how KRR technologies have been integrated into the dual-layer infrastructure to foster scalability, trustworthiness, and intelligence in interconnected cyber-physical domains. In this context, intelligent agents can seamlessly collaborate, engage in dialogue, adapt and evolve to meet the increasingly complex demands of CPS in the Digital Twin era.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.