The advent of CMOS power amplifiers has enabled compact and cost-effective solutions for RF applications. Among the available options, switching amplifiers are the most competitive due to their superior efficiency. In this paper, we present the design of a fully integrated 130 nm CMOS class-E RF power amplifier optimized for 2.4 GHz ISM band operations that is compliant with the Bluetooth Low Energy (BLE) standard. The amplifier is based on a cascode configuration with charging acceleration capacitance and a combination of standard and high-voltage (HV) MOSFETs, ensuring optimal performance while maintaining device reliability. To identify the best configuration for the proposed circuit, we first provide an overview of basic class-E amplifier operations and critically review optimization techniques proposed in the scientific literature. This review is complemented by a numerical analysis of the potential advantages of using a combined standard-HV MOSFET structure. Post-layout simulations with parasitic parameter extraction demonstrated that the amplifier achieves 40.85% Power Added Efficiency and 20.52 dBm output power.
Designing and Optimizing a 2.4 GHz Complementary Metal–Oxide-Semiconductor Class-E Power Amplifier Combining Standard and High-Voltage Metal–Oxide-Semiconductor Field-Effect Transistors / Cancelli, Roberto; Avitabile, Gianfranco; Florio, Antonello. - In: ELECTRONICS. - ISSN 2079-9292. - ELETTRONICO. - 14:6(2025). [10.3390/electronics14061135]
Designing and Optimizing a 2.4 GHz Complementary Metal–Oxide-Semiconductor Class-E Power Amplifier Combining Standard and High-Voltage Metal–Oxide-Semiconductor Field-Effect Transistors
Cancelli, Roberto;Avitabile, Gianfranco;Florio, Antonello
2025-01-01
Abstract
The advent of CMOS power amplifiers has enabled compact and cost-effective solutions for RF applications. Among the available options, switching amplifiers are the most competitive due to their superior efficiency. In this paper, we present the design of a fully integrated 130 nm CMOS class-E RF power amplifier optimized for 2.4 GHz ISM band operations that is compliant with the Bluetooth Low Energy (BLE) standard. The amplifier is based on a cascode configuration with charging acceleration capacitance and a combination of standard and high-voltage (HV) MOSFETs, ensuring optimal performance while maintaining device reliability. To identify the best configuration for the proposed circuit, we first provide an overview of basic class-E amplifier operations and critically review optimization techniques proposed in the scientific literature. This review is complemented by a numerical analysis of the potential advantages of using a combined standard-HV MOSFET structure. Post-layout simulations with parasitic parameter extraction demonstrated that the amplifier achieves 40.85% Power Added Efficiency and 20.52 dBm output power.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.