In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal growth process, in a similar way as streaky structures can be the result of a linear optimal growth mechanism. With this purpose, nonlinear optimizations based on a Lagrange multiplier technique coupled with a direct-adjoint iterative procedure are performed in a plane Poiseuille flow at subcritical values of the Reynolds number, aiming at quickly triggering nonlinear effects. Choosing a suitable time scale for such an optimization process, it is found that the initial optimal perturbation is composed of sweeps and ejections resulting in a hairpin vortex structure at the target time. These alternating sweeps and ejections create an inflectional instability occurring in a localized region away from the wall, generating the head of the primary and secondary hairpin structures, quickly inducing transition to turbulent flow. This result could explain why transitional and turbulent shear flows are characterized by a high density of hairpin vortices. © Cambridge University Press 2015.

Hairpin-like optimal perturbations in plane Poiseuille flow / Farano, M; Cherubini, Stefania; Robinet, J. C.; DE PALMA, Pietro. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 775:(2015). [10.1017/jfm.2015.320]

Hairpin-like optimal perturbations in plane Poiseuille flow

CHERUBINI, Stefania;DE PALMA, Pietro
2015-01-01

Abstract

In this work it is shown that hairpin vortex structures can be the outcome of a nonlinear optimal growth process, in a similar way as streaky structures can be the result of a linear optimal growth mechanism. With this purpose, nonlinear optimizations based on a Lagrange multiplier technique coupled with a direct-adjoint iterative procedure are performed in a plane Poiseuille flow at subcritical values of the Reynolds number, aiming at quickly triggering nonlinear effects. Choosing a suitable time scale for such an optimization process, it is found that the initial optimal perturbation is composed of sweeps and ejections resulting in a hairpin vortex structure at the target time. These alternating sweeps and ejections create an inflectional instability occurring in a localized region away from the wall, generating the head of the primary and secondary hairpin structures, quickly inducing transition to turbulent flow. This result could explain why transitional and turbulent shear flows are characterized by a high density of hairpin vortices. © Cambridge University Press 2015.
2015
Hairpin-like optimal perturbations in plane Poiseuille flow / Farano, M; Cherubini, Stefania; Robinet, J. C.; DE PALMA, Pietro. - In: JOURNAL OF FLUID MECHANICS. - ISSN 0022-1120. - 775:(2015). [10.1017/jfm.2015.320]
File in questo prodotto:
File Dimensione Formato  
Farano-2015-draft.pdf

accesso aperto

Descrizione: Accepted manuscript
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 3.25 MB
Formato Adobe PDF
3.25 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/5729
Citazioni
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact