Although the area of context-aware recommender systems (CARS) has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable "best bet" when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.

Although the area of context-aware recommender systems has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable “best bet” when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.

Comparing context-aware recommender systems in terms of accuracy and diversity / Panniello, Umberto; Tuzhilin, Alexander; Gorgoglione, Michele. - In: USER MODELING AND USER-ADAPTED INTERACTION. - ISSN 0924-1868. - STAMPA. - 24:1-2(2014), pp. 35-65. [10.1007/s11257-012-9135-y]

Comparing context-aware recommender systems in terms of accuracy and diversity

Umberto Panniello;Michele Gorgoglione
2014-01-01

Abstract

Although the area of context-aware recommender systems has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable “best bet” when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.
2014
http://link.springer.com/article/10.1007/s11257-012-9135-y
Comparing context-aware recommender systems in terms of accuracy and diversity / Panniello, Umberto; Tuzhilin, Alexander; Gorgoglione, Michele. - In: USER MODELING AND USER-ADAPTED INTERACTION. - ISSN 0924-1868. - STAMPA. - 24:1-2(2014), pp. 35-65. [10.1007/s11257-012-9135-y]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/60507
Citazioni
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 96
social impact