Although the area of context-aware recommender systems (CARS) has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable "best bet" when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.
Although the area of context-aware recommender systems has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable “best bet” when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.
Comparing context-aware recommender systems in terms of accuracy and diversity / Panniello, Umberto; Tuzhilin, Alexander; Gorgoglione, Michele. - In: USER MODELING AND USER-ADAPTED INTERACTION. - ISSN 0924-1868. - STAMPA. - 24:1-2(2014), pp. 35-65. [10.1007/s11257-012-9135-y]
Comparing context-aware recommender systems in terms of accuracy and diversity
Umberto Panniello;Michele Gorgoglione
2014-01-01
Abstract
Although the area of context-aware recommender systems has made a significant progress over the last several years, the problem of comparing various contextual pre-filtering, post-filtering and contextual modeling methods remained fairly unexplored. In this paper, we address this problem and compare several contextual pre-filtering, post-filtering and contextual modeling methods in terms of the accuracy and diversity of their recommendations to determine which methods outperform the others and under which circumstances. To this end, we consider three major factors affecting performance of CARS methods, such as the type of the recommendation task, context granularity and the type of the recommendation data. We show that none of the considered CARS methods uniformly dominates the others across all of these factors and other experimental settings; but that a certain group of contextual modeling methods constitutes a reliable “best bet” when choosing a sound CARS approach since they provide a good balance of accuracy and diversity of contextual recommendations.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.