Global solvability and uniqueness results are established for Dirichlet's problem for a class of nonlinear differential equations on a convex domain in the plane, where the nonlinear operator is elliptic in sense of Campanato. We prove existence by means of the Leray-Schauder fixed point theorem, using Alexandrov-Pucci maximum principle in order to find a priori estimate for the solution.

Global strong solvability of Dirichlet problem for a class of nonlinear elliptic equations in the plane / Palagachev, Dian K.. - In: LE MATEMATICHE. - ISSN 0373-3505. - STAMPA. - 48:2(1993), pp. 311-321.

Global strong solvability of Dirichlet problem for a class of nonlinear elliptic equations in the plane

Dian K. Palagachev
1993-01-01

Abstract

Global solvability and uniqueness results are established for Dirichlet's problem for a class of nonlinear differential equations on a convex domain in the plane, where the nonlinear operator is elliptic in sense of Campanato. We prove existence by means of the Leray-Schauder fixed point theorem, using Alexandrov-Pucci maximum principle in order to find a priori estimate for the solution.
1993
http://www.dmi.unict.it/ojs/index.php/lematematiche/article/view/564
Global strong solvability of Dirichlet problem for a class of nonlinear elliptic equations in the plane / Palagachev, Dian K.. - In: LE MATEMATICHE. - ISSN 0373-3505. - STAMPA. - 48:2(1993), pp. 311-321.
File in questo prodotto:
File Dimensione Formato  
13_LeMatematiche.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 449.55 kB
Formato Adobe PDF
449.55 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/7835
Citazioni
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact