A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.

Prediction of the vickers microhardness and ultimate tensile strength of aa5754 h111 friction stir welding butt joints using artificial neural network / DE FILIPPIS, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico. - In: MATERIALS. - ISSN 1996-1944. - 9:11(2016). [10.3390/ma9110915]

Prediction of the vickers microhardness and ultimate tensile strength of aa5754 h111 friction stir welding butt joints using artificial neural network

DE FILIPPIS, Luigi Alberto Ciro;SERIO, Livia Maria;FACCHINI, Francesco;MUMMOLO, Giovanni;LUDOVICO, Antonio Domenico
2016-01-01

Abstract

A simulation model was developed for the monitoring, controlling and optimization of the Friction Stir Welding (FSW) process. This approach, using the FSW technique, allows identifying the correlation between the process parameters (input variable) and the mechanical properties (output responses) of the welded AA5754 H111 aluminum plates. The optimization of technological parameters is a basic requirement for increasing the seam quality, since it promotes a stable and defect-free process. Both the tool rotation and the travel speed, the position of the samples extracted from the weld bead and the thermal data, detected with thermographic techniques for on-line control of the joints, were varied to build the experimental plans. The quality of joints was evaluated through destructive and non-destructive tests (visual tests, macro graphic analysis, tensile tests, indentation Vickers hardness tests and t thermographic controls). The simulation model was based on the adoption of the Artificial Neural Networks (ANNs) characterized by back-propagation learning algorithm with different types of architecture, which were able to predict with good reliability the FSW process parameters for the welding of the AA5754 H111 aluminum plates in Butt-Joint configuration.
2016
http://www.mdpi.com/1996-1944/9/11/915
Prediction of the vickers microhardness and ultimate tensile strength of aa5754 h111 friction stir welding butt joints using artificial neural network / DE FILIPPIS, Luigi Alberto Ciro; Serio, Livia Maria; Facchini, Francesco; Mummolo, Giovanni; Ludovico, Antonio Domenico. - In: MATERIALS. - ISSN 1996-1944. - 9:11(2016). [10.3390/ma9110915]
File in questo prodotto:
File Dimensione Formato  
materials-09-00915.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 10.94 MB
Formato Adobe PDF
10.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/92499
Citazioni
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 36
social impact