Nowadays, the speed whereby innovative manufacturing techniques are developed is more and more increasing and new technologies or developments of already existing processes are achieved in a smaller time. Though these innovative technologies have to face and resolve new difficulties and issues related to the novelty of the processes, however, many times they have to tackle old problems known for more than a century. One of these problems is the residual stresses issue. Residual stresses are �frozen� stresses that exist in materials or structures, essentially due to the manufacturing processes, independently that any external load has been applied on the structure or materials. Combining with the external loads, the effects of residual stresses may be either beneficial or detrimental, depending upon the magnitude, sign, and distribution of the stress. In this thesis, two innovative techniques in different fields that have to face to residual stress issues have been addressed: Friction Stir Welding and Fused Deposition Modelling. In the Friction stir welding (FSW), the material is not led to fusion and this helps to decreases the residual stresses values. However, because FSW is mainly a mechanical welding process, due to the high force involved in the weld and, thus, the rigid clamping used, the residual stresses are not low in general. Indeed, the constraints avoid the contraction of the materials during cooling in both longitudinal and transverse directions producing residual stresses. In the Fused deposition modelling (FDM), the model is built as a layer-by-layer deposition of a feedstock material. Due to this approach, the part cools down layer by layer during the deposition and, consequently, there is thermal variation and different cooling rates from one layer to the other. This produces internal stresses between layers, uneven shrinkage, de-layering problems, warping, and the relatively associated problems especially with large parts. In order to carry out this study, the two lines of investigation are basically divided as follow. For residual stress in Friction stir welding, the experimental setup to measure the temperature field on both FSW and LAFSW during the welding process has been developed. This allows to capture the whole temperature fields during the welding process and to study the influence on the temperature of the distance laser spot - FSW tool and of the laser source power. Moreover, the experimental measurements of residual stresses in new developed FSW techniques and materials, i.e. Laser Assisted FSW, the in-process cooled FSW, and lap-joint of aluminium-titanium have been carried out. Finally, the thermographic experimental results and the residual stresses measurements have been employed to validate the numerical models for FSW and LAFSW. These models can predict the temperature and residual stresses changing the process parameters and clamping configuration. For residual stress in fused deposition modelling, a preliminary study on the mechanical behaviour of FDM parts has been done in order to prove that FDM parts show an orthotropic behaviour on both static and dynamic loads. These studies are useful in order to have a better knowledge of the FDM parts and establish the appropriate behaviour of the material to employ in order to create the numerical model to carry out the residual stress calculation. This model allows to correlate the experimental displacements measured by Electronic Speckle Pattern Interferometry (ESPI) during hole drilling and the residual stresses.
Oggi, la velocità con cui vengono sviluppate tecniche di produzione innovative è sempre più crescente e nuove tecnologie o sviluppi di processi già esistenti vengono raggiunti in un tempo minore. Sebbene, queste nuove tecnologie debbano affrontare e risolvere i nuovi problemi e le questioni relative alla novità dei processi stessi, tuttavia molte volte, devono affrontare anche vecchi problemi noti da più di un secolo. Uno di questi problemi è quello delle tensioni residue. Queste ultime sono stati tensionali "congelati" che esistono in materiali o strutture, essenzialmente a causa dei processi di fabbricazione, indipendentemente che qualsiasi carico esterno sia stato applicato alla struttura o al materiale. Combinandosi con i carichi esterni, gli effetti delle tensioni residue possono essere sia positivi che negativi, a seconda della grandezza, dal segno e dalla distribuzione delle sollecitazioni. In questa tesi, sono state studiate due tecniche innovative in due diversi campi che devono affrontare i problemi relativi alle tensioni residue: Friction Stir Welding (FSW) e Fused Deposition Modelling (FDM). Poiché il materiale nella FSW non raggiunge il punto di fusione, si può pensare che i valori delle tensioni residue possano essere bassi. Tuttavia, poiché la FSW è principalmente un processo di saldatura meccanico, a causa delle elevate forze in gioco e delle importanti forze di serraggio utilizzate, le tensioni residue non possono essere considerate basse in generale. Infatti, i vincoli imposti alle piastre da saldare, impediscono la contrazione del materiale durante il raffreddamento generando tensioni residue. Nella tecnica FDM, il modello è costruito come una deposizione strato per strato del materiale base. A causa di questo approccio, la parte stampata si raffredda strato dopo strato durante la deposizione e, di conseguenza, si creano variazioni termiche e diverse velocità di raffreddamento da un livello all'altro. Questo produce tensioni interne tra gli strati, ritrazione irregolare, problemi di destratificazione, deformazioni e i problemi ad esse associati in particolare con pezzi di grandi dimensioni. Per effettuare questo studio, le due linee di indagine sono state divise sostanzialmente come segue. Per quanto riguarda le tensioni residue nella saldatura FSW, è stato sviluppato il setup sperimentale per misurare il campo di temperatura durante il processo di saldatura sia nella FSW e che nella Laser Assisted FSW. Questo permette di avere una mappa di temperatura a campo intero durante il processo di saldatura. Questo ha permesso di studiare l'influenza sulla temperatura della distanza spot laser – utensile FSW e della potenza della sorgente laser. Inoltre, sono state effettuate le misure sperimentali delle tensioni residue in nuove tecniche derivate dalla FSW e in nuovi materiali per la FSW, cioè LAFSW, l'in-process cooled FSW e giunti a sovrapposizione alluminio-titanio. Infine, i risultati sperimentali termografici e della misura delle tensioni residue sono stati impiegati per validare i modelli numerici per FSW e LAFSW. Questi modelli sono in grado di prevedere la temperatura e le tensioni residue cambiando i parametri di processo e il setup dei vincoli. Per quanto concerne le tensioni residue nella FDM, è stato eseguito prima uno studio preliminare sul comportamento meccanico dei pezzi FDM al fine di dimostrare che questi mostrano un comportamento ortotropo sia a carichi statici che dinamici. Questi studi sono stati utilizzati al fine di avere una migliore conoscenza delle parti FDM e stabilire il comportamento appropriato da impiegare al fine di creare il modello numerico per eseguire il calcolo delle tensioni residue. Questo modello permette di correlare gli spostamenti sperimentali misurati dall’Electronic Speckle pattern Interferometry (ESPI) durante la foratura e le tensioni residue.
Residual stress evaluation in innovative manufacturing techniques: FSW and FDM / Cazzato, Alberto. - (2017). [10.60576/poliba/iris/cazzato-alberto_phd2017]
Residual stress evaluation in innovative manufacturing techniques: FSW and FDM
CAZZATO, Alberto
2017-01-01
Abstract
Nowadays, the speed whereby innovative manufacturing techniques are developed is more and more increasing and new technologies or developments of already existing processes are achieved in a smaller time. Though these innovative technologies have to face and resolve new difficulties and issues related to the novelty of the processes, however, many times they have to tackle old problems known for more than a century. One of these problems is the residual stresses issue. Residual stresses are �frozen� stresses that exist in materials or structures, essentially due to the manufacturing processes, independently that any external load has been applied on the structure or materials. Combining with the external loads, the effects of residual stresses may be either beneficial or detrimental, depending upon the magnitude, sign, and distribution of the stress. In this thesis, two innovative techniques in different fields that have to face to residual stress issues have been addressed: Friction Stir Welding and Fused Deposition Modelling. In the Friction stir welding (FSW), the material is not led to fusion and this helps to decreases the residual stresses values. However, because FSW is mainly a mechanical welding process, due to the high force involved in the weld and, thus, the rigid clamping used, the residual stresses are not low in general. Indeed, the constraints avoid the contraction of the materials during cooling in both longitudinal and transverse directions producing residual stresses. In the Fused deposition modelling (FDM), the model is built as a layer-by-layer deposition of a feedstock material. Due to this approach, the part cools down layer by layer during the deposition and, consequently, there is thermal variation and different cooling rates from one layer to the other. This produces internal stresses between layers, uneven shrinkage, de-layering problems, warping, and the relatively associated problems especially with large parts. In order to carry out this study, the two lines of investigation are basically divided as follow. For residual stress in Friction stir welding, the experimental setup to measure the temperature field on both FSW and LAFSW during the welding process has been developed. This allows to capture the whole temperature fields during the welding process and to study the influence on the temperature of the distance laser spot - FSW tool and of the laser source power. Moreover, the experimental measurements of residual stresses in new developed FSW techniques and materials, i.e. Laser Assisted FSW, the in-process cooled FSW, and lap-joint of aluminium-titanium have been carried out. Finally, the thermographic experimental results and the residual stresses measurements have been employed to validate the numerical models for FSW and LAFSW. These models can predict the temperature and residual stresses changing the process parameters and clamping configuration. For residual stress in fused deposition modelling, a preliminary study on the mechanical behaviour of FDM parts has been done in order to prove that FDM parts show an orthotropic behaviour on both static and dynamic loads. These studies are useful in order to have a better knowledge of the FDM parts and establish the appropriate behaviour of the material to employ in order to create the numerical model to carry out the residual stress calculation. This model allows to correlate the experimental displacements measured by Electronic Speckle Pattern Interferometry (ESPI) during hole drilling and the residual stresses.File | Dimensione | Formato | |
---|---|---|---|
29 ciclo-CAZZATO Alberto.pdf
accesso aperto
Descrizione: Tesi di dottorato di CAZZATO Alberto - 29 ciclo
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
22.04 MB
Formato
Adobe PDF
|
22.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.