The paper studies the well posedness of the initial boundary value problem related to the evolution of an elastic beam interacting with a substrate through an elastic-breakable forcing term. This discontinuous interaction is aimed to model the phenomenon of attachement-detachement of the material during adhesion phenomena. The existence of solutions in energy space and various counterexamples to uniqueness are detailed and suitable numerical simulations are provided.

Waves in flexural beams with nonlinear adhesive interaction / Coclite, G. M.; Devillanova, G.; Maddalena, F.. - In: MILAN JOURNAL OF MATHEMATICS. - ISSN 1424-9286. - STAMPA. - 89:2(2021), pp. 329-344. [10.1007/s00032-021-00338-7]

Waves in flexural beams with nonlinear adhesive interaction

G. M. Coclite
;
G. Devillanova;F. Maddalena
2021-01-01

Abstract

The paper studies the well posedness of the initial boundary value problem related to the evolution of an elastic beam interacting with a substrate through an elastic-breakable forcing term. This discontinuous interaction is aimed to model the phenomenon of attachement-detachement of the material during adhesion phenomena. The existence of solutions in energy space and various counterexamples to uniqueness are detailed and suitable numerical simulations are provided.
2021
Waves in flexural beams with nonlinear adhesive interaction / Coclite, G. M.; Devillanova, G.; Maddalena, F.. - In: MILAN JOURNAL OF MATHEMATICS. - ISSN 1424-9286. - STAMPA. - 89:2(2021), pp. 329-344. [10.1007/s00032-021-00338-7]
File in questo prodotto:
File Dimensione Formato  
2021_Waves_in_Flexural_Beams_with_Nonlinear_Adhesive_Interaction_pdfeditoriale.pdf

accesso aperto

Tipologia: Versione editoriale
Licenza: Creative commons
Dimensione 364.53 kB
Formato Adobe PDF
364.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/209320
Citazioni
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact