We investigate the effect of statistical properties of the surface roughness on its superhydrophobicity. In particular, we focus on the liquid-solid interfacial structure and its dependence on the coupled effect of surface statistical properties and drop pressure. We find that, for self-affine fractal surfaces with Hurst exponent H > 0.5, the transition to the Wenzel state first involves the short wavelengths of the roughness and, then, gradually moves to larger and larger scales. However, as the drop pressure is increased, at a certain point of the loading history, an abrupt transition to the Wenzel state occurs. This sudden transition identifies the critical drop pressure p(W), which destabilizes the composite interface. We find that p(W) can be strongly enhanced by increasing the mean square slope of the surface, or equivalently the Wenzel roughness parameter r(W). Our investigation shows that, even in the case of randomly rough surface, r(W) is still the most crucial parameter in determining the superhydrophobicity of the surface. An analytical approach is, then, proposed to show that, for any given value of Young's contact angle theta(Y), a threshold value (r(W))(th) = 1/(-cos theta(Y)) exists, above which the composite interface is strongly stabilized and the surface presents robust superhydrophobic properties. Interestingly, this threshold value is identical to the one that would be obtained in pure Wenzel regime to guarantee perfect superhydrophobicity.

Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity / Bottiglione, Francesco; Carbone, Giuseppe. - In: LANGMUIR. - ISSN 0743-7463. - 29:2(2013), pp. 599-609. [10.1021/la304072p]

Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity

BOTTIGLIONE, Francesco;CARBONE, Giuseppe
2013-01-01

Abstract

We investigate the effect of statistical properties of the surface roughness on its superhydrophobicity. In particular, we focus on the liquid-solid interfacial structure and its dependence on the coupled effect of surface statistical properties and drop pressure. We find that, for self-affine fractal surfaces with Hurst exponent H > 0.5, the transition to the Wenzel state first involves the short wavelengths of the roughness and, then, gradually moves to larger and larger scales. However, as the drop pressure is increased, at a certain point of the loading history, an abrupt transition to the Wenzel state occurs. This sudden transition identifies the critical drop pressure p(W), which destabilizes the composite interface. We find that p(W) can be strongly enhanced by increasing the mean square slope of the surface, or equivalently the Wenzel roughness parameter r(W). Our investigation shows that, even in the case of randomly rough surface, r(W) is still the most crucial parameter in determining the superhydrophobicity of the surface. An analytical approach is, then, proposed to show that, for any given value of Young's contact angle theta(Y), a threshold value (r(W))(th) = 1/(-cos theta(Y)) exists, above which the composite interface is strongly stabilized and the surface presents robust superhydrophobic properties. Interestingly, this threshold value is identical to the one that would be obtained in pure Wenzel regime to guarantee perfect superhydrophobicity.
2013
Role of statistical properties of randomly rough surfaces in controlling superhydrophobicity / Bottiglione, Francesco; Carbone, Giuseppe. - In: LANGMUIR. - ISSN 0743-7463. - 29:2(2013), pp. 599-609. [10.1021/la304072p]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/52196
Citazioni
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 51
social impact