Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
POLITECNICO DI BARI - Catalogo dei prodotti della Ricerca
We deal with the existence of solutions for the quasilinear problem(P_λ) {(- Δ_p u = λ u^{q-1} + u^{p*-1}, in Ω,;
u > 0, in Ω,;
u = 0, on ∂ Ω,)
where Ω is a bounded domain in R^N with smooth boundary, N≥p^2, 1<p≤q<p*, p*=Np/(N-p), λ>0 is a parameter. Using Morse techniques in a Banach setting, we prove that there exists λ* > 0 such that, for any λ ∈ (0, λ*), (P_λ) has at least P_1(Ω) solutions, possibly counted with their multiplicities, where P_t (Ω) is the Poincaré polynomial of Ω. Moreover for p ≥ 2 we prove that, for each λ ∈ (0, λ*), there exists a sequence of quasilinear problems, approximating (P_λ), each of them having at least P_1(Ω) distinct positive solutions.
Multiple positive solutions for a critical quasilinear equation via Morse theory
We deal with the existence of solutions for the quasilinear problem(P_λ) {(- Δ_p u = λ u^{q-1} + u^{p*-1}, in Ω,;
u > 0, in Ω,;
u = 0, on ∂ Ω,)
where Ω is a bounded domain in R^N with smooth boundary, N≥p^2, 1
0 is a parameter. Using Morse techniques in a Banach setting, we prove that there exists λ* > 0 such that, for any λ ∈ (0, λ*), (P_λ) has at least P_1(Ω) solutions, possibly counted with their multiplicities, where P_t (Ω) is the Poincaré polynomial of Ω. Moreover for p ≥ 2 we prove that, for each λ ∈ (0, λ*), there exists a sequence of quasilinear problems, approximating (P_λ), each of them having at least P_1(Ω) distinct positive solutions.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/6558
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
23
23
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2021-2023 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.