We develop a variational framework to detect high energy solutions of the planar Schrodinger-Poisson system {-Delta u + a(x)u + gamma wu = 0, {Delta w = u(2) in R-2 with a positive function a is an element of L-infinity(R-2) and gamma > 0. In particular, we deal with the periodic setting where the corresponding functional is invariant under Z(2)-translations and therefore fails to satisfy a global Palais-Smale condition. The key tool is a surprisingly strong compactness condition for Cerami sequences which is not available for the corresponding problem in higher space dimensions. In the case where the external potential a is a positive constant, we also derive, as a special case of a more general result, the existence of nonradial solutions (u, w) such that u has arbitrarily many nodal domains. Finally, in the case where a is constant, we also show that solutions of the above problem with u > 0 in R-2 and w(x) -> -infinity as vertical bar x vertical bar -> infinity are radially symmetric up to translation. Our results are also valid for a variant of the above system containing a local nonlinear term in u in the first equation.

On the planar Schrodinger-Poisson system / Cingolani, Silvia; Weth, T.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 33:1(2016), pp. 167-197. [10.1016/j.anihpc.2014.09.008]

On the planar Schrodinger-Poisson system

CINGOLANI, Silvia;
2016-01-01

Abstract

We develop a variational framework to detect high energy solutions of the planar Schrodinger-Poisson system {-Delta u + a(x)u + gamma wu = 0, {Delta w = u(2) in R-2 with a positive function a is an element of L-infinity(R-2) and gamma > 0. In particular, we deal with the periodic setting where the corresponding functional is invariant under Z(2)-translations and therefore fails to satisfy a global Palais-Smale condition. The key tool is a surprisingly strong compactness condition for Cerami sequences which is not available for the corresponding problem in higher space dimensions. In the case where the external potential a is a positive constant, we also derive, as a special case of a more general result, the existence of nonradial solutions (u, w) such that u has arbitrarily many nodal domains. Finally, in the case where a is constant, we also show that solutions of the above problem with u > 0 in R-2 and w(x) -> -infinity as vertical bar x vertical bar -> infinity are radially symmetric up to translation. Our results are also valid for a variant of the above system containing a local nonlinear term in u in the first equation.
2016
On the planar Schrodinger-Poisson system / Cingolani, Silvia; Weth, T.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - 33:1(2016), pp. 167-197. [10.1016/j.anihpc.2014.09.008]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/6958
Citazioni
  • Scopus 108
  • ???jsp.display-item.citation.isi??? 107
social impact