The paper deals with the problem of minimizing a free discontinuity functional under Dirichlet boundary conditions. An existence result was known so far for C-1 (partial derivative Omega) boundary data u. We show here that the same result holds for (u) over cap epsilon C-0.u(partial derivative Omega) if it > 1/2 and it cannot be extended to cover the case mu = 1/2 The proof is based on some geometric measure theoretic properties, in part introduced here, which are proved a priori to hold for all the possible minimizers.

Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities / Lops, F. A.; Maddalena, F.; Solimini, S.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 18:6(2001), pp. 639-673. [10.1016/S0294-1449(01)00077-4]

Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities

Maddalena, F.;Solimini, S.
2001-01-01

Abstract

The paper deals with the problem of minimizing a free discontinuity functional under Dirichlet boundary conditions. An existence result was known so far for C-1 (partial derivative Omega) boundary data u. We show here that the same result holds for (u) over cap epsilon C-0.u(partial derivative Omega) if it > 1/2 and it cannot be extended to cover the case mu = 1/2 The proof is based on some geometric measure theoretic properties, in part introduced here, which are proved a priori to hold for all the possible minimizers.
2001
Hölder continuity conditions for the solvability of Dirichlet problems involving functionals with free discontinuities / Lops, F. A.; Maddalena, F.; Solimini, S.. - In: ANNALES DE L INSTITUT HENRI POINCARÉ. ANALYSE NON LINÉAIRE. - ISSN 0294-1449. - STAMPA. - 18:6(2001), pp. 639-673. [10.1016/S0294-1449(01)00077-4]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11589/10228
Citazioni
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact